

LA-UR-17-28233

 $\label{lem:proved} \mbox{Approved for public release; distribution is unlimited.}$

Title: Optical Probes for Hydrotests

Author(s): Primas, Lori Ellen

Sullivan, Gregg Kent Pickrell, Mark Manley

Intended for: Background information for visit to Timbercon

Issued: 2017-09-12

Optical Probes for Hydrotests Visit with Timbercon

Lori Primas, Gregg Sullivan, Mark Pickrell

September 20, 2017

Purpose of our visit

 Work with Timbercon to help us improve performance of optical probes for hydrotests.

- Discussion:
 - What is a hydrotest?
 - Description of optical hydrotests
 - Current design of optical probe
 - What is need to improve performance of optical probe?

Hydrotests

- Hydrotests, also know as hydrodynamic experiments, are:
 - Performed at a firing sites such as DARHT or R306 (usually contained in 6 foot vessels)
 - Consist of weapons-like assemblies, using surrogate materials
 - Modified to include integrated diagnostics
 - Data from diagnostics is used by our modelers to improve their codes and test weapon performance

Hydrotests at DARHT

Optical Hydrotests

- Unique capability at LANL
- Used to collect early time implosion data from initial motion to probe impact
- Requires an optical probe with hundreds of beams, coupled to an data collection system (MPDV)

PDV – Photon Doppler Velocimetry

MPDV – Multiplexed Photon Doppler Velocimetry

Optical Probe Design

Beam distribution and density defined by mask

Single mode fibers coupled to mask

Minimize lens diameter to increase late time data collection, but this decreases optical quality

Beam collimation (size & shape) defined by lens system

Index matching fluid between fibers and first lens surface

Optical Probe Beam Position

Currently measure beam position to within +/- 0.002" at 3 radii, will be able to automate measurement beam location to within +/- 10 um at +10 radii with CMM like machine

Optical Probe Back Reflection

LUNA OBR
Optical Back Reflection
10 micron spatial resolution

Back reflection at mask-fiber interface is larger than the back reflection at the dynamic surface

Current Configuration

Fiber coupled optical probe (~300 beams)

Polatis Optical Switch 192 X 192

MPDV Gen 2 – 128 channels

Maximize Ad/

- Measure the ratio of back reflection from the fiber-first lens surface interface (A_s) and the dynamic surface (A_d) $Q = (A_d) / (A_s)$
- Eliminate beams with very low Q
- Down select beams to optimize spatial distribution
- Distribute beams to on MPDV channels to:
 - Maximize jump off time difference in group of 4 ITU s
 - Separate beams that are closely spaced to unique detectors.
 - Group beams with similar Q values on same detector to reduce dynamic range compression.

Design Requirements for Optical Probe

- Minimize back reflection from mask-fiber interface
- Maximize number of fibers coupled to lens system to eliminate need for masks with unique designs
 - MPDV Gen 2 = 128 beams
 - MPDV Gen 3 = 256 beams
 - With spares ~ 500 beams

Future Development: New Lens

- Present lens uses index matching fluid between fibers and first lens surface
 - Matched for visible, but MPDV works at 1550 nm
 - Can dry out, temperature effects
 - ⇒Significant reflected power from lens >> surface.
- Plan is to develop means to weld glass fibers directly to first lens surface.
 - Negligible reflected power.
 - Stable
 - Cheap

End Cab Technology Sounds Promising

- End cap technology. This technology allows the fusing of a single mode or multimode fiber to a larger, coreless fiber, thus allowing the expansion of the beam (or spot size) to be scaled up for higher power applications. A typical application might be to fuse a 10 um multi-mode fiber to a 1 or 2 mm coreless fiber. By controlling the length of the coreless fiber (end cap), the divergent beam is still reflected internally (TIR) but can have a larger spot size at the end cap's exit aperture. By AR coating the end cap aperture, good transmission efficiency can occur and be available for downstream experiments.
- An offshoot of this technology could be the fabrication of a sensing array of many fibers fused to a common optical substrate (lens or flat substrate at a critical focal plane) for sensing applications.

Timbercon Products Used in Other Diagnostics

- Other Diagnostics Used on Hydrotest
 - TOAD Standard, Jump Off PDV, Sensitive
 - 32 channels (4 racks, 8 channels each)
 - 8 channels (1 mini rack, portable)
 - 8 channels (portable, 4 channels per chassis)
 - CFBG
 - Classic 20 channels
 - Time Domain 14 channels

